DEPARTMENT OF MECHANICAL ENGINEERING

Subject Name: Electrical and Electronics Engineering
Prepared by:
Dr.K.Suresh, Professor / EEE
Mr.B.Parthiban, Assistant Professor / EEE
Mr.R.Ragupathy, Assistant Professor/ EEE

Verified by:
Subject Code:MET35

Approved by:

4. ELECTRONCS

Op.Amp. - Characteristics - Inverting amplifier - Non-inverting amplifier -differentiation integration I/V converter - V/I converter - Instrumentation amplifier - adder - subtractor - First order low pass filter and High pass filter using op. Amp

Part-A (2 Marks)

1. List out the ideal characteristics of OPAMP.(APRIL/2013)(APRIL/2014)(NOV/2014)
$>$ An ideal op amp draws no current in both the input terminals. Therefore its impedance is infinite. Any source can drive it and there is no loading on the driver stage.
$>$ The gain of an ideal op-amp is infinite, hence the differential input $\mathrm{V}_{\mathrm{d}}=\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)$ is essentially zero for the infinite output voltage.
$>$ The output voltage V_{0} is independent of the current drawn from the output terminals. Thus its output impedance is zero and hence output can drive an infinite number of other circuits.
2. Mention some of the applications of OPAMP (NOV/2014)
$>$ Instrumentation amplifier
$>\mathrm{V}$ to I converter
$>\mathrm{I}$ to V converter
$>$ comparator
3. What do you mean by inverting amplifier?(APRIL/2012/2014)

The output of such an amplifier is inverted as compared to the input signal. The inverted output signal means having a phase shift of 180° as compared to the input signal. So, am amplifier which provides a phase shift of 180° between input and output is called inverting amplifier.
4. What is an operational amplifier (NOV/2013)

The operational amplifier most commonly referred as 'op-amp' was introduced in 1940s. The operational amplifiers performs addition, subtraction, multiplication etc. due to its use in performing mathematical operations, it has been given as operational amplifier.
5. Draw the circuit diagram of I to \mathbf{V} converter (NOV/2013)

6. Draw the circuit diagram of subractor. (APRIL/2013)

7. Draw the circuit diagram of op-amp differentiator. (NOV/2012)

8. What is meant by filter? (NOV/2012)

A filter is a circuit that is designed to pass a specific band of frequencies while attenuating all the signals outside that band. It is a frequency selective circuit.
9. Mention some applications of an instrumentation amplifier. (APRIL/2012)
$>$ Temperature controller
$>$ Temperature indicator
$>$ Light intensity meter
$>$ Analog weight scale
10. Draw the pin configuration of IC741.

Part-B (11 Marks)

1. Explain the working of an instrumentation amplifier with a circuit. Give its characteristics and application (11) (NOV2012/APRIL/NOV/2014)

In many industrial and consumer applications the measurement and control of physical conditions are very important.(foreg) measurement of temperature \& humidity inside a dairy or a meat plant permit the operators make necessary adjustments to maintain product quality. Similarly precise temperature control of plastic furnace is needed to produce a particular type of plastic.Generally, a transducer is used at the measuring site to obtain the required information easily \& safely. The transducer is a device that converts one form of energy into another.

A resistive transducer whose resistance changes as a function of some physical energy is connected in one arm of bridge with a small circle around it \& is denoted by ($R \pm \Delta R$), where R_{T} is the resistance of transducer and $\Delta \mathrm{R}$ the change in resistance of RT . The bridge in the circuit is dc exited but could be ac exited as well. For the balanced bridge at some reference condition,

Generally resistors $\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}, \mathrm{R}_{\mathrm{C}}$ are selected so that they are equal in value to the transducer resistance R_{T} at some reference condition the reference condition is the specific value of the physical quantity under measurement at which the bridge is balanced this value is normally established by the designer and depends on the transducer's characteristics, the type of physical quantity to be measured, and the desired application.The bridge is balanced initially at a desired reference condition. However, as the physical quantity to be measured changes, the resistance of the transducer also changes, which causes the bridge to unbalance $(\mathrm{Va} \neq \mathrm{Vb})$. The output voltage of the bridge can be expressed as a function of the change in resistance of the transducer.

Let the change in resistance of the transducer be Δ_{R}. Since $R_{b} \& R_{c}$ Are fixed resistors, the voltage V_{b} is constant. However, the voltage V_{a} varies as a function of the change in transducer resistance. Therefore, according to the voltage divider rule,

$$
\begin{gathered}
V_{a}=\frac{R_{A}\left(V_{d c}\right)}{R_{A}+\left(R_{T}+\Delta \mathrm{R}\right)} \\
V_{a}=\frac{R_{B A}\left(V_{d c}\right)}{\left(R_{B}+R_{c}\right)}
\end{gathered}
$$

Consequently, the voltage V_{ab} across the output terminals of the bridge is,
$\mathrm{V}_{\mathrm{ab}}=\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}$

$$
V_{a b}=\frac{R_{A} V_{d c}}{R_{A}+R_{T}+\Delta R}-\frac{R_{B} V_{d c}}{R_{B}+R_{c}}
$$

However, if $\mathrm{R}_{\mathrm{A}}=\mathrm{R}_{\mathrm{B}}=\mathrm{R}_{\mathrm{C}}=\mathrm{R}_{\mathrm{T}}=\mathrm{R}$, then

$$
V_{a b}=\frac{\Delta R\left(V_{d c}\right)}{2(2 R+\Delta R)}
$$

the (-)ve sign indicates that $\mathrm{V}_{\mathrm{a}}<\mathrm{V}_{\mathrm{b}}$ (since RT increases)
The basic gain differential amplifier is $\left(-\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{1}\right)$

$$
V_{0}=V_{a b}-\frac{R_{f}}{R_{1}}=\frac{\Delta R\left(V_{d c}\right)}{2(2 R+\Delta R)} \frac{R_{f}}{R_{1}}
$$

Generally, R is very small. Therefore we can approximate $(2 \mathrm{R}+\mathrm{R})=2 \mathrm{R}$.

$$
V_{0}=\frac{R_{f}}{R_{1}} \frac{\Delta R}{4 R} V_{d c}
$$

This equation indicates that V is directly proportional to the change in resistance R of the transducer since the change in resistance is caused by a change in physical energy, a meter connected at the output can be calibrated in terms of the units of that physical energy.

Features of Instrumentation Amplifier

$>$ High gain
> High CMRR
$>$ Low Power consumption
> High slew rate

Applications of Instrumentation Amplifier

> Temperature indicator
> Light-intensity meter
$>$ Thermal conductivity meter
> Analog weight scale
2. Draw the circuit of a first order and second order butter worth active low pass filter and derive the transfer function (11) (APRIL/2013)(NOV/2014)
(i)Low pass filter

The first order low pass Butterworth filter is realized by RC circuit used along with an opamp, used in the non- inverting configuration. This is also called one pole low pass Butterworth filter. The resistances R_{f} and R_{1} decide the gain of the filter in the pass band.

First Order Low Pass Butterworth Filter

Analysis of the filter circuit

The impedance of the capacitor C is $-\mathrm{j} \mathrm{X}_{\mathrm{c}}$ where X_{c} is the capacitive reactance given by

$$
X_{c}=1 /(2 \pi \mathrm{fC}) .
$$

By potential divider rule, the voltage at the non-inverting input terminal 2 which is the voltage across the capacitor C is given by
RC filter is connecting non inverting input

$$
\begin{gathered}
V_{2}=\left[\frac{1 / j \omega C}{R_{3}+1 / j \omega C}\right] V_{i} \\
\omega=2 \pi f \\
V_{2}=\left[\frac{1}{1+j \omega R_{3} C}\right] V_{i}
\end{gathered}
$$

General non inverting output

$$
V_{0}=\left[1+\frac{R_{f}}{R}\right] V_{i n}
$$

We can write,

$$
\begin{gathered}
V_{0}=\left[1+\frac{R_{f}}{R}\right]\left[\frac{1}{1+j \omega R_{3} C}\right] V_{i} \\
\frac{V_{0}}{V_{i}}=\left[1+\frac{R_{f}}{R}\right]\left[\frac{1}{1+j \omega R_{3} C}\right] \\
\frac{V_{0}}{V_{i}}=\left[1+\frac{R_{f}}{R}\right]\left[\frac{1}{1+j 2 \pi f R_{3} C}\right] \\
\frac{V_{0}}{V_{i}}=\frac{A_{f}}{1+j\left({ }^{f} / f_{C}\right)} \\
A_{f}=1+\frac{R_{f}}{R}
\end{gathered}
$$

f- Frequency of input signal
fc-Cutoff frequency of filter

$$
f_{C}=\frac{1}{2 \pi R_{3} C}
$$

(i) HighPass Filter

High Pass Filter

$$
\begin{gathered}
V_{2}=\frac{R_{3}}{R_{3}+\frac{1}{j \omega C}} \\
V_{2}=\frac{j \omega R_{3} C}{1+j \omega R_{3} C} V_{i}
\end{gathered}
$$

For non inverting output

$$
\begin{gathered}
V_{0}=\left[1+\frac{R_{2}}{R_{1}}\right] V_{2} \\
\frac{V_{0}}{V_{i}}=\left[1+\frac{R_{2}}{R_{1}}\right]\left[\frac{j \omega R_{3} C}{1+j \omega R_{3} C}\right] \\
\frac{V_{0}}{V_{i}}=\left[1+\frac{R_{2}}{R_{1}}\right]\left[\frac{j 2 \pi f R_{3} C}{1+j 2 \pi \mathrm{fR}_{3} C}\right] \\
\frac{V_{0}}{V_{i}}=A_{f}\left[\frac{j \frac{f}{f_{C}}}{1+j \frac{f}{f_{C}}}\right]
\end{gathered}
$$

Where $\mathrm{A}_{\mathrm{f}}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}+1$

$$
f_{C}=\frac{1}{2 \pi R_{3} C}
$$

3. Explain the analysis of differentiator. (NOV/2013)(APRIL/2014)

The circuit which produces the differentiation of the input voltage at its output is called differentiator. The differentiator circuit which does not use any active device is called passive differentiator. While the differentiator using an active device like op-amp is called an active differentiator.The circuit performs the mathematical operation of differentiation. i.e. the output wave form is the derivative of the input waveform. The differentiator provides a constant output above a cut-off frequency and passes no signal below this frequency. So the differentiator is also called as high pass filter (HPF).The non-inverting terminal (3) is grounded. Therefore node ' a ' voltage is zero.
i.e. $\mathrm{Va}=0$

$$
\text { (i.e.) } \mathrm{V}_{\mathrm{o}} \propto \mathrm{dVi}
$$

At node 'a',

$$
C_{f} \frac{d V_{i}}{d t}+\frac{V_{0}}{R_{f}}=0
$$

\checkmark The node ' a ' is virtually grounded. Therefore $V_{n}=V_{a}=0$

$$
\frac{V_{0}}{R_{f}}=-C_{1} \frac{d V_{i}}{d t}
$$

\checkmark Here the -ve sign is introduced because the input is given to the inverting terminal
The equation shows that the output is $\mathrm{C}_{1} \mathrm{R}_{\mathrm{f}}$ times the differentiation of the input and product $\mathrm{C}_{1} \mathrm{R}_{\mathrm{f}}$ is called time constant of the differentiator.

Input to Differentiator

4. Draw and explain the operation of integrator circuits. (NOV/2013)

In an integrator circuit, the output voltage is the integration of the input voltage. The integrator circuit can be obtained without using active devices like op-amp, transistors etc. in such a case an integrator is called passive integrator. While an integrator using an active device like an op-amp is called active integrator. The integrator provides a constant output below a cut-off frequency and passes no signal above this frequency. So the integrator is also called as low pass filter (LPF). If we inter change the resistor and the capacitor of the differentiator we get the circuit of an integrator.

The non- inverting terminal is grounded. The node N is also at ground potential from the concept of virtual ground. $\mathrm{V}_{\mathrm{N}}=0$, as input current of op-amp is zero, the entire current I flowing through R_{1}, also flows through C_{f} (i.e) Vo $\infty \mathrm{Vi}$

At node 'a'

$$
\begin{gathered}
\frac{V_{i}}{R_{1}}+C_{f} \frac{d V_{0}}{d t}=0 \\
C_{f} \frac{d V_{0}}{d t}=-\frac{V_{i}}{R_{1}} \\
\frac{d V_{0}}{d t}=-\frac{V_{i}}{R_{1} C_{f}} \\
d V_{0}=-\frac{V_{i} d t}{R_{1} C_{f}}
\end{gathered}
$$

Integrating on both sides

$$
\begin{gathered}
\int d V_{0}=-\frac{V_{i} * d t}{R_{1} C_{f}} \\
\int d V_{0}(t)=\left(\frac{1}{C_{f} R_{1}}\right) \int V_{i}(t)
\end{gathered}
$$

Input to Integrator

Output of Integrator
5. With neat circuit diagram explain the operation of adder and subtractor. (APRIL2012) (NOV/2012) (NOV/2013)

A circuit whose output is the sum of all the inputs given is called summer or summing amplifier. There are two types of summer (i) inverting summer \& (ii) non-inverting summer.

(i) Inverting Summer

A summer amplifier with two input voltages V1 and V2, two input resistors R1 and R2, feedback resistor Rf is shown in the fig. below

Inverting Summer
The voltage at the node ' a ' is zero as the non- inverting input terminal is virtually grounded.
The nodal equation by KCL at node ' a ' is

$$
\begin{gathered}
\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}+\frac{V_{0}}{R_{3}}=0 \\
V_{0}=R_{f} / R_{1}\left(V_{1}+V_{2}\right) \\
V_{0} \infty\left(V_{1}+V_{2}\right)
\end{gathered}
$$

(ii) Non Inverting Summer

Non Inverting Summing amplifier

For non inverting,

$$
\begin{gathered}
V_{0}=\left[1+\frac{R_{f}}{R}\right] V_{\text {in }} \\
V_{\text {in }}=\frac{V_{1} / R_{1}+V_{2} / R_{2}+V_{3} / R_{3}}{1 / R_{1}+1 / R_{2}+1 / R_{3}} \\
V_{0}=\left[1+\frac{R_{f}}{R}\right]\left[\frac{V_{1} / R_{1}+V_{2} / R_{2}+V_{3} / R_{3}}{1 / R_{1}+1 / R_{2}+1 / R_{3}}\right]
\end{gathered}
$$

If $R_{1}=R_{2}=R_{3}=R$

$$
V_{0}=\left[1+\frac{R_{f}}{R}\right]\left[\frac{V_{1}+V_{2}+V_{3}}{3}\right]
$$

(iii)DIFFERENTIAL AMPLIFIER (or) SUBTRACTOR

A circuit that amplifier the difference between the two signals. The differential amplifier is very useful in instrumentation circuits. The voltage V_{1} and V_{2} are applied at op-amp input terminals. The different voltage at the input terminal of the op-amp is zero. Node 'a' and 'b' are at the same potential designated as V_{3}.

Consider node ' a ',

$$
\frac{V_{3}-V_{2}}{R_{1}}+\frac{V_{3}-V_{0}}{R_{2}}=0
$$

Consider node 'b'

$$
\frac{\mathrm{V}_{3}-\mathrm{V}_{1}}{\mathrm{R}_{1}}+\frac{\mathrm{V}_{3}}{\mathrm{R}_{2}}=0
$$

Rewriting equation (a) \& (b)

$$
\begin{aligned}
& \left(\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}\right) \mathrm{V}_{3}-\frac{\mathrm{V}_{2}}{\mathrm{R}_{1}}=\frac{\mathrm{V}_{0}}{\mathrm{R}_{2}} \\
& \left(\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}\right) \mathrm{V}_{3}-\frac{\mathrm{V}_{1}}{\mathrm{R}_{1}}=0
\end{aligned}
$$

Subtracting equating (3) from (4)

$$
\begin{gathered}
-\frac{V_{2}}{R_{1}}+\frac{V_{1}}{R_{1}}=\frac{V_{0}}{R_{2}} \\
\frac{V_{1}-V_{2}}{R_{1}}=\frac{V_{0}}{R_{2}} \\
V_{0}=\frac{R_{2}}{R_{1}}\left(V_{1}-V_{2}\right)
\end{gathered}
$$

6. Explain the analysis of inverting amplifier and non- inverting amplifier (APRIL/2013)
(i) INVERTING AMPLIFIER

An inverting amplifier not only amplifies the input signal but also produce a phase shift in voltage between the input and the output.

Inverting Amplifier
The op amp circuit consists of a resistor R_{1} and a feedback resistor $R_{f} \cdot R_{1}$ is connected between the input and the inverting terminal of the op amp.The R_{f} is connected between the input inverting(2) terminal and the output(6) of the op amp. The non- inverting terminal (3) is grounded. The input and the output of the inverting amplifier are out of phase with each other. Since the input impedance of the op-amp is large, current cannot enter into the op-amp. So output current is same as
the input current i.e. $\mathrm{I}_{1}=\mathrm{I}_{0}$. The input is given to the inverting terminal and the non-inverting terminal is virtually grounded therefore the node voltage is zero. So voltage developed across R_{f} is equal to the output voltage Vn of the circuit.
W.K.T,

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{i}}=\mathrm{I}_{1} \mathrm{R}_{1} \\
& \mathrm{I}_{1}=\mathrm{V}_{\mathrm{i}} / \mathrm{R}_{1} \\
& \mathrm{~V}_{\mathrm{o}}=\mathrm{I}_{\mathrm{o}} * \mathrm{R}_{\mathrm{f}} \\
& \mathrm{~V}_{\mathrm{o}}=-\mathrm{I}_{1} * \mathrm{R}_{\mathrm{f}}\left(\mathrm{I}_{\mathrm{o}}=-\mathrm{I}_{1}\right)
\end{aligned}
$$

Here the -ve sign indicates that the input and the output are in the opposite direction

$$
\begin{aligned}
& V_{o}=-V_{i} * R_{f} / R_{1} \\
& A v=-R_{f} / R_{1}
\end{aligned}
$$

(ii) NON-INVERTING AMPLIFIER:

A non-inverting amplifier amplifies the signal and the output is same as that of the input. In the noninverting amplifier the input is applied to the non-inverting terminal (3) and the resistor R_{1} is grounded. The voltage at the inverting terminal (Vi) must be same as that at the non-inverting terminal. The input impedance of the op-amp is very high so that the entire voltage given is obtained at the node ' a '. If I_{1} is the current through the resistor $\mathrm{R}_{1}, \mathrm{~V}_{\mathrm{i}}=\mathrm{I}_{1} . \mathrm{R}_{1}$

Non Inverting Amplifier
Since the voltage drop across R_{1} is equal to the difference between V_{i} and V_{o},

$$
\begin{aligned}
& \mathrm{I}_{0}=\frac{\mathrm{V}_{0}-\mathrm{V}_{\mathrm{i}}}{\mathrm{R}_{\mathrm{f}}} \\
& \mathrm{I}_{\mathrm{o}}^{*} \mathrm{R}_{\mathrm{f}}=\mathrm{V}_{\mathrm{o}}-\mathrm{V}_{\mathrm{i}} \\
& \mathrm{~V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{i}}+\mathrm{I}_{\mathrm{o}} . * \mathrm{R}_{\mathrm{f}}
\end{aligned}
$$

We know that, $\mathrm{I}_{1}=\mathrm{I}_{\mathrm{o}}$,

$$
\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{i}}+\mathrm{I}_{1} \cdot \mathrm{R}_{\mathrm{f}}
$$

From (1) \& (2)=

$$
\begin{gathered}
A_{V}=\frac{V_{0}}{V_{i}} \\
A_{V}=\frac{V_{i}+I_{1} * R_{f}}{I_{1} * R_{1}}=\frac{I_{1} * R_{1}+I_{1} * R_{f}}{I_{1} * R_{1}}=\frac{R_{1}+R_{f}}{R_{1}}
\end{gathered}
$$

7. Explain in detail about V to I converter. (APRIL/2012)
(i) Voltage To Current Converter [Transconductance Amplifier]

In many application it is necessary to convert voltage signal to a proportional output current.
$>$ V-I converter with floating load
$>\mathrm{V}$ - I converter with grounded load

V-I Converter with Load Z_{L}

Since the voltage at node a is V_{i}

$$
\begin{gathered}
V_{i}=i_{L} R_{1} \\
i_{L}=\frac{V_{i}}{R_{1}}
\end{gathered}
$$

(i.e.) the input voltage V_{i} is converted into an output current of $\frac{V_{i}}{R_{1}}$

Same current flows through signal source and load

Applying KCL, $i_{1}+i_{2}=i_{L}$

$$
\begin{gathered}
\frac{V_{i}-V_{1}}{R}+\frac{V_{0}-V_{1}}{R}=i_{L} \\
\mathrm{~V}_{\mathrm{i}}+\mathrm{V}_{0}-2 \mathrm{~V}_{1}=\mathrm{Ri}_{\mathrm{L}} \\
V_{1}=\frac{R i_{L}-V_{0}-V_{i}}{-2} \\
V_{1}=\frac{-R i_{L}+V_{0}+V_{i}}{2}
\end{gathered}
$$

Since op-amp is used in non-inverting mode

$$
\begin{gathered}
\text { Gain }=1+R / R \\
\text { Gain }=2
\end{gathered}
$$

Output Voltage, $V_{0}=2 V_{1}$

$$
\begin{gathered}
V_{i}=I_{L} R_{1} \\
I_{L}=\frac{V_{i}}{R_{1}}
\end{gathered}
$$

Input impedance of non-inverting amplifier is very high.

Applications:

$>$ It is used in low voltage DC and AC voltmeter
> It is used in led and Zener diode

(ii) Current To Voltage Converter [Transresistance Amplifier]

Photocell, photodiode, photovoltaic cell give an output current, (i.e.) proportional to an incident radiant energy or light.The circuit through this device can be converted to voltage by using a current voltage converter and there by the amount of light or radiant energy incident on the photo device can be measured.-ve terminal is at virtual ground, no current flows through R_{s} and current Is flows through the feedback resistor R_{f}, thus the output voltage

$$
V_{0}=i_{s} R_{f}
$$

Resistor R_{f} is sometime shunted with a capacitor C_{f} to reduce high frequency noise and the possibility of oscillation.

Reference:

1. I. Albert Malvino and David Bates, "Electronic Principles", 7th Edition, Tata Mc-Graw Hill, New Delhi, 2006.
2. Ramakant A Gayakward, Operational Amplifiers and Linear Integrated circuits, 4th Edition, PHI Learning, Delhi, 2009.
